感知机的分类与结构化预测_CodingPark编程公园

基本概念

引言

隐马尔可夫模型能捕捉的特征仅限于两种:其一,前一个标签是什么;其二,当前字符是什么。
为了利用更多的特征,线性模型 应运而生
线性模型由两部分构成: 一系列用来提取特征的特征函数 φ,以及相应的权重向量 w。

分类问题

概念

分类指的是预测样本所属类别的一类问题。
二分类也可以解决任意类别数的多分类问题(one vs rest)。
在这里插入图片描述

应用

在NLP领域,绝大多数任务可以用分类来解决。文本分类天然就是一个分类问题。关键词提取时,对文章中的每个单词判断是否属于关键词,于是转化为二分类问题。在指代消解问题中,对每个代词和每个实体判断是否存在指代关系,又是一个二分类问题。在语言模型中,将词表中每个单词作为一种类别,给定上文预测接下来要出现的单词。

线性分类模型

想要分类样本ÿ

评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符 “速评一下”
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页
实付 79.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值